On the Diierential Equation Dx Dt = = Xx K(x )] Where K I S a T Oeplitz Annihilator

نویسنده

  • Moody T Chu
چکیده

The di erential equation dX dt X k X where k is a Toeplitz annihilator has been suggested as a means to solve the inverse Toeplitz eigenvalue problem Starting with the diagonal matrix whose entries are the same as the given eigenvalues the solution ow has been observed numerically to always converge a symmetric Toeplitz matrix as t This paper is an attempt to understand the dynamics involved in the case n Introduction Consider the di erential system

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Diierential Equation Dx Dt = X; K(x )] Where K Is a Toeplitz Annihilator

The di erential equation dX dt = [X; k(X)] where k is a Toeplitz annihilator has been suggested as a means to solve the inverse Toeplitz eigenvalue problem. Starting with the diagonal matrix whose entries are the same as the given eigenvalues, the solution ow has been observed numerically to always converge a symmetric Toeplitz matrix as t ! 1. This paper is an attempt to understand the dynamic...

متن کامل

Ordinary Differential Equations with Fractalnoisef

The diierential equation dx(t) = a(x(t); t) dZ (t) + b(x(t); t) dt for fractal-type functions Z (t) is determined via fractional calculus. Under appropriate conditions we prove existence and uniqueness of a local solution by means of its representation x(t) = h(y(t) +Z(t); t) for certain C 1-functions h and y. The method is also applied to It^ o stochastic diierential equations and leads to a g...

متن کامل

Probability Theory and Related Fields. Manuscript-nr. Stochastic Invariant Imbedding Application to Stochastic Diierential Equations with Boundary Conditions

We study stochastic diierential equations of the type : dx t = f(t; x t)dt + d X k=1 k (t; x t) dw k t ; x 2 IR d ; t 2 0; T 0 ]: Instead of the customary initial value problem, where the initial value x 0 is xed, we impose an aane boundary condition : h 0 x 0 + h 1 x T0 = v 0 ; where h 0 , h 1 are deterministic matrices and v 0 is a xed vector. Our main aim is to prove existence and uniqueness...

متن کامل

Annihilator-small submodules

Let $M_R$ be a module with $S=End(M_R)$. We call a submodule $K$ of $M_R$ annihilator-small if $K+T=M$, $T$ a submodule of $M_R$, implies that $ell_S(T)=0$, where $ell_S$ indicates the left annihilator of $T$ over $S$. The sum $A_R(M)$ of all such submodules of $M_R$ contains the Jacobson radical $Rad(M)$ and the left singular submodule $Z_S(M)$. If $M_R$ is cyclic, then $A_R(M)$ is the unique ...

متن کامل

A Stabilization Algorithm for Linear Controlled Sde's

We consider a stochastic diierential equation with linear feedback control : dX t = (A 0 + B 0) X t dt + L X l=1 (A l + B l) X t dW l (t) where 2 R is a oneedimensional feedback gain matrix. The problem is to nd an online algorithm which adjust the parameter in order to stabilize the system. We propose a stochastic gradient method which minimize the Lyapunov exponent associated with the solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995